CLI Reference

The Axolotl CLI provides a streamlined interface for training and fine-tuning large language models. This guide covers the CLI commands, their usage, and common examples.

Basic Commands

All Axolotl commands follow this general structure:

axolotl <command> [config.yml] [options]

The config file can be local or a URL to a raw YAML file.

Command Reference

fetch

Downloads example configurations and deepspeed configs to your local machine.

# Get example YAML files
axolotl fetch examples

# Get deepspeed config files
axolotl fetch deepspeed_configs

# Specify custom destination
axolotl fetch examples --dest path/to/folder

preprocess

Preprocesses and tokenizes your dataset before training. This is recommended for large datasets.

# Basic preprocessing
axolotl preprocess config.yml

# Preprocessing with one GPU
CUDA_VISIBLE_DEVICES="0" axolotl preprocess config.yml

# Debug mode to see processed examples
axolotl preprocess config.yml --debug

# Debug with limited examples
axolotl preprocess config.yml --debug --debug-num-examples 5

Configuration options:

dataset_prepared_path: Local folder for saving preprocessed data
push_dataset_to_hub: HuggingFace repo to push preprocessed data (optional)

train

Trains or fine-tunes a model using the configuration specified in your YAML file.

# Basic training
axolotl train config.yml

# Train and set/override specific options
axolotl train config.yml \
    --learning-rate 1e-4 \
    --micro-batch-size 2 \
    --num-epochs 3

# Training without accelerate
axolotl train config.yml --no-accelerate

# Resume training from checkpoint
axolotl train config.yml --resume-from-checkpoint path/to/checkpoint

It is possible to run sweeps over multiple hyperparameters by passing in a sweeps config.

# Basic training with sweeps
axolotl train config.yml --sweep path/to/sweep.yaml

Example sweep config:

_:
  # This section is for dependent variables we need to fix
  - load_in_8bit: false
    load_in_4bit: false
    adapter: lora
  - load_in_8bit: true
    load_in_4bit: false
    adapter: lora

# These are independent variables
learning_rate: [0.0003, 0.0006]
lora_r:
  - 16
  - 32
lora_alpha:
  - 16
  - 32
  - 64

inference

Runs inference using your trained model in either CLI or Gradio interface mode.

# CLI inference with LoRA
axolotl inference config.yml --lora-model-dir="./outputs/lora-out"

# CLI inference with full model
axolotl inference config.yml --base-model="./completed-model"

# Gradio web interface
axolotl inference config.yml --gradio \
    --lora-model-dir="./outputs/lora-out"

# Inference with input from file
cat prompt.txt | axolotl inference config.yml \
    --base-model="./completed-model"

merge-lora

Merges trained LoRA adapters into the base model.

# Basic merge
axolotl merge-lora config.yml

# Specify LoRA directory (usually used with checkpoints)
axolotl merge-lora config.yml --lora-model-dir="./lora-output/checkpoint-100"

# Merge using CPU (if out of GPU memory)
CUDA_VISIBLE_DEVICES="" axolotl merge-lora config.yml

Configuration options:

gpu_memory_limit: Limit GPU memory usage
lora_on_cpu: Load LoRA weights on CPU

merge-sharded-fsdp-weights

Merges sharded FSDP model checkpoints into a single combined checkpoint.

# Basic merge
axolotl merge-sharded-fsdp-weights config.yml

evaluate

Evaluates a model’s performance using metrics specified in the config.

# Basic evaluation
axolotl evaluate config.yml

lm-eval

Runs LM Evaluation Harness on your model.

# Basic evaluation
axolotl lm-eval config.yml

Configuration options:

# List of tasks to evaluate
lm_eval_tasks:
  - arc_challenge
  - hellaswag
lm_eval_batch_size: # Batch size for evaluation
output_dir: # Directory to save evaluation results

Legacy CLI Usage

While the new Click-based CLI is preferred, Axolotl still supports the legacy module-based CLI:

# Preprocess
python -m axolotl.cli.preprocess config.yml

# Train
accelerate launch -m axolotl.cli.train config.yml

# Inference
accelerate launch -m axolotl.cli.inference config.yml \
    --lora_model_dir="./outputs/lora-out"

# Gradio interface
accelerate launch -m axolotl.cli.inference config.yml \
    --lora_model_dir="./outputs/lora-out" --gradio
Important

When overriding CLI parameters in the legacy CLI, use same notation as in yaml file (e.g., --lora_model_dir).

Note: This differs from the new Click-based CLI, which uses dash notation (e.g., --lora-model-dir). Keep this in mind if you’re referencing newer documentation or switching between CLI versions.

Remote Compute with Modal Cloud

Axolotl supports running training and inference workloads on Modal cloud infrastructure. This is configured using a cloud YAML file alongside your regular Axolotl config.

Cloud Configuration

Create a cloud config YAML with your Modal settings:

# cloud_config.yml
provider: modal
gpu: a100  # Supported: l40s, a100-40gb, a100-80gb, a10g, h100, t4, l4
gpu_count: 1    # Number of GPUs to use
timeout: 86400  # Maximum runtime in seconds (24 hours)
branch: main    # Git branch to use (optional)

volumes:        # Persistent storage volumes
  - name: axolotl-cache
    mount: /workspace/cache
  - name: axolotl-data
    mount: /workspace/data
  - name: axolotl-artifacts
    mount: /workspace/artifacts

env:            # Environment variables
  - WANDB_API_KEY
  - HF_TOKEN

Running on Modal Cloud

Commands that support the –cloud flag:

# Preprocess on cloud
axolotl preprocess config.yml --cloud cloud_config.yml

# Train on cloud
axolotl train config.yml --cloud cloud_config.yml

# Train without accelerate on cloud
axolotl train config.yml --cloud cloud_config.yml --no-accelerate

# Run lm-eval on cloud
axolotl lm-eval config.yml --cloud cloud_config.yml

Cloud Configuration Options

provider: # compute provider, currently only `modal` is supported
gpu: # GPU type to use
gpu_count: # Number of GPUs (default: 1)
memory: # RAM in GB (default: 128)
timeout: # Maximum runtime in seconds
timeout_preprocess: # Preprocessing timeout
branch: # Git branch to use
docker_tag: # Custom Docker image tag
volumes: # List of persistent storage volumes
env: # Environment variables to pass
secrets: # Secrets to inject